
System-Level Anomaly Detection using Hardware
Performance Counters

Mark Zwolinski, Lai Leng Woo, and Basel Halak

Abstract—In computer-based systems, anomalous behaviour
can result from physical effects, such as variations in temperature
and voltage, single event effects and component degradation, as
well as from various security attacks such as control hijacking,
malware, reverse engineering, eavesdropping and many others.
In this paper, we will present a detection technique to detect a
change in the system before the system encounters a failure, by
using data from Hardware Performance Counters (HPCs). We
show how HPC data can be used to create an execution profile
of a system based on measured events and any deviation from
this profile indicates an anomaly has occurred in the system.
The first step in developing a detector is to analyse the HPC
data and extract features from the collected data to build a
forecasting model. Anomalies are assumed to happen if the
observed values fall outside given confidence intervals, which are
calculated based on the forecast values and prediction confidence.
A detector should provide a warning to the user if anomalies
occur consecutively for a certain number of times. We evaluate
our detection algorithm on benchmarks that are affected by single
bit flip faults. Our initial results show that the detection algorithm
is suitable for use for this kind of univariate time series data and
is able to correctly identify anomalous data from normal data.

I. INTRODUCTION

Improvements in transistor size and integrated circuit per-

formance have allowed an increase in the number of affordable

embedded sensors. With the emergence of the Internet of

Things (IoT), these sensors are now being connected together

in networks where huge amounts of time series data are

streamed, collected and shared. The sensors used in IoT

are considered inexpensive and replaceable, however, there

is increasing expectation that these sensors function safely,

securely and reliably. The concerns have been studied for

many years. Safety in embedded systems means reducing the

frequency of failures whereas reliability means ensuring the

system completes the task without experiencing any failure [1].

Security in the context of an IoT application is to ensure that

malicious attackers do not gain control of any of the embedded

devices or systems that could lead to disastrous consequences.

Although care has been taken to ensure these systems and

sensors function in a safe, secure and reliable manner, they

are still exposed to various environmental conditions which

may cause problems for the systems and sensors. For example,

the sensors may be imperfect, a bit error may appear, or the

nature of the physical processes may have some variations.

Security attacks on IoT applications, such eavesdropping,

control hijacking, malware and others also cause problems to

IoT applications.

The impact of these problems is anomalous behaviour in

the system, which could lead to device failure. Very often,

users are aware of the anomalous behaviour only after a failure

has occurred. One practical approach is to detect anomalies

from streaming real-time data. Here, we have used Hardware
Performance Counters (HPCs) to monitor the behaviour of a

system. HPCs are sets of special-purpose counters built into

processors to record events precisely and accurately in real-

time. A system that behaves normally (no error is detected in

the system) exhibits a particular profile, and any deviations

from this profile indicate an anomaly in the system. The

research on anomaly detection in real-time streaming data

is not something new, however, but we have yet to find

research attempting to detect a change in the behaviour of the

system using HPCs. This paper is the first attempt that focuses

on early detection of anomalies (deviation from the normal

patterns in the system) by utilising the real-time streaming

HPCs that is available in the processor itself, and thus, no

modification is required to the physical system. By creating

a system that has some self-awareness capability and that is

able to provide a warning to the user before a failure occurs,

we aim to minimise or even avoid potential risk to the user.

Overall, the main contributions of our work are as follows:

• We develop an algorithm for early detection of system-

level anomalous behaviour using HPCs;

• We explore several anomaly detection methods in a case

study;

• We develop a new attribute called the detection time

that evaluates the effectiveness of the early detection

algorithm; and

• Our results show that the algorithm can be used for early

detection of system-level anomalous behaviour.

This paper is organised as follows. Section II looks at

anomaly detection in the context of real-time time-series data.

Our experiments with HPCs are presented in Section III.

Our proposed detection algorithm and experiment based on

hardware performance counter are presented in Section IV.

In Section V, we discuss the data we obtained from our

experiment. Finally, in Section VI, we conclude the paper and

make suggestions for future research.

Mark Zwolinski, Lai Leng Woo and Basel are with Halak
Department Electronics and Computer Science, University of
Southampton, Southampton, United Kingdom SO17 1BJ
Email: mz@ecs.soton.ac.uk

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

63

II. ANOMALY DETECTION

Anomalous behaviour, or in short, anomalies, is behaviour

that does not conform to a normal, expected pattern and can

also be identified as outliers, exceptions, peculiarities, contam-

inants or other terms according to the domain [2] and anomaly

detection refers to finding patterns in data that do not conform

to expected behaviour [3]. The science of detecting anomalies

is typically applied in applications like fraud detection in credit

card applications, loan facilities applications, state benefits,

fraudulent usage of credit cards and mobile telecommunication

[2], network intrusion detection [4], network performance

detection [5] as well as activity monitoring [6].

Anomaly detection is not an easy problem to solve due to

various factors such as the nature of the data itself, the avail-

ability of labelled data, the types of anomalies to be detected,

the application domain and many more. There are numerous

existing anomaly detection techniques such as classification-

based, clustering-based, nearest-neighbour-based, statistical,

information theoretic and spectral [3], however, most of these

techniques are often used for detecting anomalies in batches

of data and are unsuitable for real-time streaming applications.

Techniques that require data labelling such as supervised

learning are also not suitable for real-time anomaly detection.

Most of the anomaly detection methods used in real-time

streaming time series data are statistical techniques that are

computationally lightweight, as one of the main requirements

is the ability of the algorithm to learn continuously without

storing the whole stream of data. These techniques include

sliding windows [7], [8], ARIMA [9], Exponential Smoothing

[10], Hierarchical Temporal Memory (HTM) [11] and change

detection [12]. For real-time streaming time series data, early

detection of anomalies is valuable as it allows actions to be

taken, possibly even preventing system failure [11]. As evalu-

ating all the methods is beyond the scope of this paper, we will

focus on applying sliding window, Exponential Smoothing and

ARIMA techniques to detect anomalies in the streaming data

from HPCs.

III. METHODOLOGY AND EXPERIMENT

Similar to what was done elsewhere, [13], [14], we use

HPCs to create fault-free execution profiles for several differ-

ent type of benchmarks.

There are several different fault models used in digital

circuits. In our experiment, we focus on the single stuck-fault

(SSF) model because this fault model is applicable to many

different physical fault regardless of whatever technology is

applied.

We have chosen to use the following counters to profile the

executions: the number of committed instructions (instructions

that were executed); number of function calls; number of

integer instructions; and number of load instructions.

Once we have identified the fault model and specific hard-

ware counters for monitoring, we created fault-free executables

from various benchmarks and performed the simulation using

Gem5 and GemFI, described below. We obtain initial execu-

tion profiles using the counters. The next step is to inject faults

and observe the anomalies recorded using the counters.

This experiment was conducted on a Microsoft Azure virtual

machine, [15]. We created a Linux virtual machine with 16

central processing units (CPUs), 32 GBs of memory and

1TBs of data storage. We used Ubuntu version 14.04 for

compatibility with Gem5 and GemFI.

A. Architectural Simulator

Gem5 [16] simulator is an instruction set simulator, widely

used in computer architecture research. It supports various

Instruction Set Architectures (ISAs) such as X86, ARM,

Alpha, Sparc, Mips and Power. Gem5 can operate in two

modes: System Call Emulation (SE) and Full System (FS).
SE mode allows users to emulate most common system calls,

thus avoiding the need to model devices or even an operating

system (OS). In FS mode, Gem5 models complete system

including the OS and devices, executing both user-level and

kernel-level instructions.

GemFI [17], is a cycle accurate fault injection tool devel-

oped based on Gem5 with the primary objective of enabling

fault injection. GemFI supports the Alpha and Intel X86 ISAs.

There are two intrinsic functions provided by GemFI API:

• void FI init() initialises the fault injection module.

• void FI activate (int id, int command) is a pseudo-

assembly instruction to toggle a fault on a specific thread.

The thread is given a numerical identification number.

A set of faults is generated using the fault generator that comes

together with GemFI. Each fault contains four attributes:

Location; Thread; Time; and Behaviour.

B. Benchmarks

The benchmarks used in this experiment are from MiBench

[18], which is a set of 35 embedded applications divided

into six suites with each suite targeting a specific area of the

embedded market. We have chosen the basicmath, bitcount
and qsort benchmarks from the Automotive and Industrial

Control suite, as well as Dijkstra from the Network suite. The

basicmath program performs simple mathematical functions.

The bitcount algorithm tests the bit manipulation ability of

a processor by counting the number of bits in an array of

integers and qsort uses the popular qsort algorithm to sort a

large array of strings into ascending order. Dijkstra calculates

the shortest path between every pair of nodes in a graph.

C. Experimental Setup

To extract the HPCs features that will be used to monitor

system reliability, there are several steps:

1) Set up the benchmarks required for testing.

Each benchmark was compiled dynamically in two

versions – one in the original form and another with

GemFI intrinsic functions added. Both versions were

compiled for the X86 ISA. For basicmath, no input data

was required, whereas for bitcount, the input data is an

array of integers and for qsort, the input data contains a

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

64

Fig. 1. Overview of the GemFI API, after [17]. The red components show
possible fault injection locations; the red octagon is where the executables
run.

list of words. The input data for Dijkstra is a large graph

in the form of an adjacency matrix. The executable files

are then placed in the disk image serving as the virtual

disk for GemFI.

2) Perform the simulation.

Simulation of the benchmarks was performed in both

the Gem5 and GemFI simulators in FS mode. FS mode

simulates the execution of the benchmarks in an OS-

based simulation environment. A script file is created to

assist in the execution of the benchmarks. After fault

injection has been initialised and enabled, a set of faults

is then created using the fault generator in GemFI. A

fault configuration file describing the fault to be injected

is provided for GemFI. This file is parsed at startup and

each fault is injected into one of the four internal queues,

which correspond to a pipeline stage. The simulation

continues as normal until it is time for the fault to be

injected. Figure 1 provides a general overview of how

the simulation works using GemFI API. The blue lines

indicates that the tasks belong to the user, the red lines

indicate the responsibility of GemFI, and the orange line

denotes the HPC values as outputs from the OS.

Each experiment was executed six times: (i) initial run;

(ii) with fault activation; (iii) fault injected in the Fetch

pipeline; (iv) fault injected in the Decode pipeline; (v)

fault injected in the Execute pipeline; and (vi) fault

injected in the Load/Store pipeline. The fault model

applied in this experiment is a stuck-at-1 fault model,

and it is applied at every level in the pipeline.

3) Trace and record the required HPC values.

Two different tracing methods were tried to log the

HPCs values obtained. The first method was to obtain

the HPCs after the operating system (OS) has booted

and another set of HPCs at the end of the execution of

the benchmark. However, this method can only provide

an indication that an error has occurred which causes the

TABLE I
TOTAL INSTRUCTIONS FOR EACH BENCHMARK

Total Instructions Benchmarks
Basicmath Bitcount QSort QSort (2) Dijkstra

GemFi 590984224 40508678 83324366 82063568 52370245
GemFI w/ Fault Activated 590989240 40511222 83339395 82065794 52373445
Injected Fault - Fetch 13718386802 27945500 59913002 421330792 50701576
Injected Fault - Decode 590989240 40511222 83244369 82065794 52373445
Injected Fault - Execute 586196426 20397641 21025988 42442442 302299133
Injected Fault - Memory 1410304814 40511222 83339395 82065792 52373446

program to either hang, crash or provide incorrect out-

put, but is unable to determine when the fault occurred.

The second method was to log the HPCs values at

certain intervals. Using this method, we can demonstrate

that we are able to create an execution profile for each

benchmark, and to detect the instance when an error has

occurred. We found that tracing the HPC data at time

intervals of 10ms (which is equivalent to 200,000 cycles)

is sufficient to create a profile for each benchmark. The

HPC data presented below are only for the benchmarks

and do not include the OS.

D. Results and Analysis

Figure 2 compares the execution profiles obtained from

four different benchmarks using the number of committed

instructions (axis Y) plotted against the time interval (axis X).

By inspection, the profiles for each benchmark differ from one

another, which suggests that HPCs can be used to identify the

normal behaviour of the system. Profiles using the number

of integer instructions, the number of function calls as well

as the number of load instructions were plotted as well (but

not displayed here due to space) and these profiles also show

distinct differences, suggesting that it is sufficient to monitor

the reliability of the system based on one or two counters.

In our experiments, as we injected a stuck-at-1 fault in

every pipeline, we discovered that this stuck-at-1 (or 0) fault

led to errors such as segmentation faults, invalid opcodes,

kernel panics and invalid instruction pointers. These errors

will then cause the program to either crash or hang. Table I

shows the total instructions executed for each benchmark. In

particular, “GemFI” and “GemFI w/ Fault Activated” represent

the baseline data for the program being executed successfully.

The value in “GemFI w/ Fault Activated” will always be

slightly higher compared to “GemFI” due to the additional

intrinsic functions that are added. Table I also displays the

total instructions for QSort and QSort2 with two different sets

of input data.

Table I lists the total instructions executed after a fault is

injected in every pipeline. Values that differ from the baseline

“GemFI w/ Fault Activated” number indicate that an anomaly

has occurred in the program. A value that is below the baseline

indicates that the program terminates early, whereas a value

that exceeds the baseline indicates that the program hangs.

As we discussed earlier, obtaining the data at the end of

the execution is only able to tell us whether the program

has terminated successfully but cannot determine when an

error has occurred. For example, consider the total instructions

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

65

(a)

(b)

(c)

(d)

Fig. 2. Execution profiles based on the number of committed instructions for
different benchmarks - (a) Basicmath, (b) Bitcount, (c) QSort and (d) Dijkstra

recorded for the basicmath benchmark when a fault is injected

in the Execute pipeline. If we compare the value of 586196426

against the baseline 590989240, the initial conclusion would

be the program had not terminated successfully. However, if

we perform instructions tracing in a time interval, we can see

that an error has occurred but that the program did terminate

successfully. This is illustrated better in Figure 3 (a) where

the profile shown by the maroon line indicates a drop at

#
 o

f
C

o
m

m
it

te
d

 I
n

s
tr

u
c
it

o
n

s

Interval

Basicmath Benchmark

(a)

#
 o

f
C

o
m

m
it

te
d

 I
n

s
tr

u
c

ti
o

n
s

Interval

BitCount Benchmark

(b)

(c)

(d)

Fig. 3. Execution profiles that shows how a failure that occurred can be
detected using only counters for different benchmarks - (a) Basicmath, (b)
Bitcount, (c) QSort and (d) Dijkstra

interval 553500 to value 80000 compared to the expected

value between 84000 and 85000. The value 80000 stays for a

number of cycles until the program managed to recover from

the fault and resumed the execution at interval 615000 until

completion. We have shown that by tracing the data at intervals

and creating a profile using the HPCs, it is possible to capture

even a slight change in the program.

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

66

In Figure 3 (a) for the Basicmath benchmark, the profile

was able to capture the error occurring in the fetch pipeline

(yellow line) and the memory pipeline (dark green line). As

noted, it is also possible to detect an error that occurs due to

a fault, but is recovered, as shown by the maroon line in the

same figure. This figure shows how an error can be visible if

we performed data tracing. Other benchmarks, Figure 3 (b), (c)

and (d), also show that errors are detectable using the counters.

In 3 (b), the HPCs were able to detect a system hang in the

fetch pipeline (yellow line) and execute pipeline (blue line),

whereas in 3 (c), the execute pipeline (blue line) shows that

the program has crashed (hence the line stopped in the midst

of execution), and the fetch pipeline (green line) shows the

program hangs.

These findings provide justification for our hypothesis that

tracing HPCs in an interval can be used for anomaly detection

in embedded systems.

IV. EARLY DETECTION ALGORITHM

Using GemFI, a single bit-flip fault model was injected

into the Dijkstra benchmark. A single hardware counter, the

number of committed instructions, was sampled at every 0.1μs

and gathered at an equally spaced time interval of 100μs;

this data is used to monitor the system’s behaviour. We then

developed an early detection method with a univariate type of

time-series data.

The HPC data is a univariate type of time series data that

can be represented as X = {x(t)|1 ≤ t ≤ m} where x{t}
is a vector of continuous streaming data input at time t and

can be represented as x{t} = x1, x2, x3, ..., xt. Briefly, in

our algorithm, we propose early detection of system-level

anomalous behaviour using a sliding window where q is

the number of hardware counters used to predict the next

sequential data xt+1. Data will be classified as anomalous if

it falls outside the upper and lower ranges of the predicted

value calculated using Dt as the confidence interval, p. If

five anomalies are detected consecutively, the system sends

a warning to the user, else, the sliding window moves a step

forward by removing xt−q+1 from the back of the window

and adding the current data xt+1 to the front of the window

to create Dt+1. The detail of the algorithm is explained further

in following subsections.

A. One-Step-Ahead Prediction

The first step of this algorithm is to determine the size of

the sliding window, q. Generally, there are two types of data

used to detect anomalies – historical data and real-time data.

The difference between using historical data compared to real-

time data is that historical data uses previous and subsequent

data in the window as input parameters to determine if the

current data is anomalous, whereas real-time data uses only

the previous data in the window to determine if the next data is

anomalous. When the system experiences some anomalies, it is

observed that the counter data starts to deviate from the point

at which the fault was manifested. Based on this observation,

the sliding window, q, will use previous data to predict the

next data and this can be written as:

Dt =
{
xt−q+1, xt−q+2, xt−q+3, ..., xt−q+q} (1)

Once the size of the sliding window has been determined, a

univariate autoregressive model of the hardware counter data

is used to predict the next counter value using the previous

data as input. According to [7], [8], univariate autoregressive

models are models that are used to predict future data in a

sensor data stream by using specified set of previous mea-

surements from the same sensor. This model is suitable for

use in this experiment as it uses only one variable and data

is being sampled at the same frequency. Dt is used as the

input into the autoregressive model, M , to predict the next

data which can be written as:

xt+1 = M(Dt) (2)

This work compares three methods for creating a one-step-

ahead prediction model, namely Single Exponential Smooth-

ing (SES), Single-Layer Linear Network Predictor (LN) and

Autoregressive Moving Average (ARMA).

1) Single Exponential Smoothing (SES): SES is a type

of exponential smoothing that weighs past observations with

exponentially decreasing weights to forecast future values. The

predicted value, xt+1 is calculated using:

xt+1 = αxt + (1− α)(Dt) where 0 < α ≤ 1 (3)

The constant parameter α is a smoothing constant, used to

smooth or damp older observations. The value of α was de-

termined using a trial-and-error approach and the α value that

provides the model with the best performance was selected.

SES requires at least 3 previous data points for initialisation

before a prediction of the next data can be made.

2) Single-Layer Linear Network Predictor (LN): The LN

method predicts the next data xt+1 as a linear combination of

the q previous data points using the following equation:

xt+1 =

∑q−1
i=0 wixt−i
∑q−1

i=0 wi

(4)

where b and w0, w1, ..., wq−1 is a set of constant weights

used to predict the next expected data based on the sliding win-

dow Dt. For simplicity, we have assigned the weight vectors

to 1, 2, ..., q with the weight vector is inversely proportional

to the distance of the points in the sliding window, that is, the

further the point xt from xt+1, the smaller the weight vector

will be.

3) Autoregressive Moving Average (ARMA): The ARMA

method (also known as the Box-Jenkins method) consists

of an autoregressive (AR) part and a moving average (MA)

part where the AR part regresses the variable on its past

values, while the MA part models the error term. There is

no Integrated term, as the time series data is found to be

stationary based on the Augmented Dickey-Fuller (ADF) test.

Therefore, the ARMA (p, q) model is used, defined as follows:

xt+1 = c+φ1Yt−1+...+φpYt−p+εt−θ1εt−1−...−θqεt−q (5)

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

67

In our work, we tested the value (p, q) between 0 and 5 in

increments of 1, based on an autocorrelation plot (ACF) and

a partial autocorrelation plot (PACF); the (p, q) values that

provides the model with the best performance are selected.

B. Anomaly Classification

Once the next data has been predicted using either the SES,

LN or ARMA prediction methods, the next step is to determine

the upper and lower bounds of the predicted value using the

confidence interval, p, where the upper and lower bounds

determine the acceptable range of values the future hardware

counter data can take. We assumed the models’ residuals have

zero-mean normal distributions and the standard deviation is

calculated based on the window size. Therefore, the range of

acceptable values is calculated using the following equation:

xt+1 ± (tα/2,q−1 ∗
√∑

(xt − x̄t)2

q − 1
) (6)

where xt+1 is the predicted data, tα/2 is pth percentile of the

t-distribution with q − 1 degrees of freedom,
√∑

(xt − x̄t)2

is the standard deviation of the model residual and q is the size

of the sliding window. If the next actual hardware counter data

falls within the range, the data is considered non-anomalous,

else if it falls outside the range, the actual data is marked

anomalous. As we had observed, the hardware counter data

does not have a fixed value, therefore, using a confidence

interval is more relevant and beneficial compared to using

some random threshold as confidence interval maintain the

width of the upper and lower range according to the actual

data.

C. Early Detection

The main objective of the proposed detector is to be able

to detect the anomalous behaviour as quickly as possible but

at the same time, to avoid the detector being overly sensitive.

From our observation, when the system experiences a failure,

the hardware counter data begins to deviate from its normal

pattern. The number of anomalies detected consecutively is

determined using a trial-and-error approach, where the aim is

to choose the value that gives the quickest detection time.

V. DISCUSSION AND ANALYSIS

Fig 4 shows the result of one-step-ahead prediction using

the three different methods outlined earlier. The upper and

lower ranges calculated from Equation 6 are also shown in the

same figures. It can be seen that the actual hardware counter

data lies very near to the predicted data in all three methods.

However, the SES method has provided a rather smoother

predicted value, hence there is a bigger residual difference

between actual data and predicted data compared to the LN

and ARMA methods. Another observation is that both the

SES and LN methods have also produced a bigger range of

acceptable values compared to the ARMA method. However,

as we will show in our analysis, a bigger range of acceptable

values will make it harder to detect anomalies.

(a)

(b)

(c)

Fig. 4. One-step-ahead prediction methods - (a) SES Method, (b) LN Method,
and (c) ARMA Method

In order to evaluate the effectiveness of the early detection

algorithm, we look at how well the detector has performed in

classifying the anomalies using the sensitivity, specificity and

accuracy statistical attributes. Sensitivity (also known as true

positive rate) evaluates how well the detection algorithm cor-

rectly identifies the anomalies and specificity (also known as

true negative rate), measures how well the detection algorithm

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

68

correctly identifies the non-anomalies. Accuracy measures how

well the detection algorithm detect both anomalies and non-

anomalies. True Positive (TP) and True Negative (TN) are the

ideal situation where data points are detected and identified

correctly, while False Positive (FP) and False Negative (FN)

are undesirable cases which are impossible to eliminate but

need to be kept to a minimum. The formulae to calculate

sensitivity, specificity and accuracy are defined as follows:

Sensitivity =
TP

(TP + FN)
(7)

Specificity =
TN

(TN + FP)
(8)

Accuracy =
TP + TN

(TP + FN + TN + FP)
(9)

Another attribute that is important in evaluating our detec-

tion algorithm is detection time. This is an important attribute

as it will determine which method is quickest in identifying

the anomalous behaviour in the system. We have developed a

formula to calculate detection time as shown below:

Detection time = (TP + FN) ∗ Logging Interval (10)

The goal of the detector is to detect the anomalous be-

haviour at the earliest time, therefore, the key attribute is the

lowest detection time that can be attained from the proposed

methods. A low (or early) detection time means low values of

TP and FN are required. Lower values of TP and FN means

a smaller value of sensitivity will be attained. The window

size, k, and confidence interval, p, are the two parameters that

are optimised in order to improve the detection algorithm. The

parameter k determines how many previous points are used

in the calculation to predict xt+1 and the value k takes in

from 4 to 12 in increments of one. Parameter p calculates

the acceptable range for a data point to be classify as non-

anomalous and the value p varies from 85% to 99% with the

increment of 5%. Larger value of p means bigger range of

values are acceptable.

Table II shows the statistical analysis of using the ARMA

method for predicting the next data with the table showing the

top three results where detection time, TP, FN and FP are the

lowest. The logging interval is set at 100 μs, and the earliest

detection time was found to be 1700 μs. The result shows that

the value of specificity where the detector was able to detect

and identify non-anomalous points is at least 95% and above

in most cases (except where (k, p) is (4, 90%), the specificity

recorded was 92.6%). The best performance of the detector is

achieved with k = 4 and p = 99% where actual data points

that anomalous, TP is 2 and data points that are normal and

identified as normal, TN is 264. The accuracy achieved with

this setup was 93.0%.

Table III shows the statistical results for all three methods.

For simplicity, only the top three results from each method are

presented. From the results, it is clear that all three methods

shows high accuracy of at least 89% achieved using LN

method and highest being 93.0% which was achieved using

the ARMA method. The ARMA method has also been shown

to be superior compared to SES and LN, where the anomalous

behaviour was detected earliest at 1700μs compared to 1900μs

and 2700μs using SES and LN, respectively. The specificity

attribute using ARMA method is 93%, which is the highest

of all. This means that the one-step-ahead prediction model

using ARMA was more accurate as it is able to predict values

that lie very close to the actual values.

VI. CONCLUSION

In this study, we have developed an early detection algo-

rithm that detects anomalies by detecting a change in the

hardware performance counter data. This detection algorithm

is performed on a univariate time series data using a one-step-

ahead prediction applied to a sliding window, k, and the range

of acceptable data is calculated from the predicted data using

a confidence interval, p. The first step is to slice the data into

small windows before applying a prediction model to predict

the next counter data. Anomalies are assumed to have occurred

if the value falls outside the acceptable range. The algorithm

goes a step further to detect if there are 5 anomalies that have

occurred consecutively.

The detection algorithm was tested on the Dijkstra bench-

mark that was affected with single bit flip fault. From the

results, we conclude that the early detection algorithm de-

veloped in this study is useful in early detection of system-

level anomalous behaviour. The detection algorithm is a simple

algorithm which is suitable for application in IoT devices as it

only requires the time series data of the hardware performance

counter and does not require any initial classification of the

data. In summary:

• We have developed an algorithm for early detection of

system-level anomalous behaviour using hardware per-

formance counter data;

• We explored several methods for one-step-ahead predic-

tion which can be applied in our case study;

• We also developed a new attribute called the detection

time that evaluates the effectiveness of the early detection

algorithm; and

• Our results show that the algorithm can be used for early

detection of system-level anomalous behaviour.

Our study will be further expanded by looking at other plau-

sible techniques which can optimise our detection algorithm

to reduce the detection time. One of the ways to reduce the

detection time is by minimising the false negatives where the

detector identified anomalous data points as normal. We also

plan to develop and test the detector in a real IoT device and

evaluate the detector in terms of its complexity, computational

power, area and cost.

VII. ACKNOWLEDGEMENT

This work has been partly supported by Microsoft Azure

Research Award number CRM: 0518905.

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

69

TABLE II
STATISTICAL ANALYSIS OF ARMA METHOD WITH VARIOUS PARAMETER SETUP

Parameters
(k, p) (4, 90%) (4, 95%) (4, 99%) (5, 95%) (5, 99%) (6, 95%) (6, 99%)

TP 3 3 2 3 2 3 2
FN 14 14 15 14 15 14 15
FP 20 11 5 11 8 14 9
TN 249 258 264 258 261 255 260
Sensitivity 0.176 0.176 0.118 0.176 0.118 0.176 0.118
Specificity 0.926 0.959 0.981 0.959 0.970 0.948 0.967
Accuracy 88.11% 91.25% 93.00% 91.26% 91.96% 90.21% 91.61%
Detection Time
(μs) 1700 1700 1700 1700 1700 1700 1700

TABLE III
STATISTICAL ANALYSIS USING ARMA, SES AND LN METHODS

ARMA SES
(α = 0.3) LN

Parameters
(k, p) (4, 99%) (5, 99%) (6, 99%) (4, 99%) (5, 99%) (6, 99%) (4, 99%) (5, 99%) (12, 99%)

TP 2 2 2 4 4 4 9 9 9
FN 15 15 15 15 15 15 18 18 18
FP 5 8 9 6 8 9 12 14 13
TN 264 261 260 263 261 260 257 255 256
Sensitivity 0.118 0.118 0.118 0.211 0.211 0.211 0.333 0.333 0.333
Specificity 0.981 0.970 0.967 0.978 0.970 0.967 0.955 0.948 0.952
Accuracy 93.00% 91.96% 91.61% 92.71% 92.01% 91.67% 89.86% 89.19% 89.53%
Detection Time
(μs) 1700 1700 1700 1900 1900 1900 2700 2700 2700

REFERENCES

[1] P. Koopman, “Reliability, safety and security in everyday embedded
systems,” Dependable Computing, Lecture Notes in Computer Science,
vol. 4746/2007, 2007.

[2] V. J. Hodge and J. Austin, “A survey of outlier detection methodologies,”
Artificial Intelligence Review, vol. 22, no. 2, pp. 85 – 126, 2004.

[3] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computer Survey, vol. 41, no. 3, pp. 15: 1 –15: 58, July 2009.

[4] J. Lin, Q. Zhang, H. Bannazadeh, and A. Leon-Garcia, “Automated
anomaly detection and root cause analysis in virtualized cloud infras-
tructures,” in NOMS 2016 - 2016 IEEE/IFIP Network Operations and
Management Symposium, April 2016, pp. 550–556.

[5] Y. Zhang, S. Debroy, and P. Calyam, “Network-wide anomaly event
detection and diagnosis with perfsonar,” IEEE Transactions on Network
and Service Management, vol. 13, no. 3, pp. 666–680, Sept 2016.

[6] P. Fiadino, A. D’Alconzo, M. Schiavone, and P. Casas, “Towards
automatic detection and diagnosis of internet service anomalies via dns
traffic analysis,” in 2015 International Wireless Communications and
Mobile Computing Conference (IWCMC), Aug 2015, pp. 373–378.

[7] D. J. Hill and B. S. Minsker, “Anomaly detection in streaming
environmental sensor data: A data-driven modeling approach,”
Environmental Modeling and Software, vol. 25, no. 9, pp. 1014–
1022, September 2010. [Online]. Available: http://dx.doi.org/10.1016/j.
envsoft.2009.08.010

[8] Y. Yu, Y. Zhu, S. Li, and D. Wan, “Time series outlier detection based
on sliding window prediction,” Mathematical Problems in Engineering,
no. 879736, 2014.

[9] Z. Hasani, “Robust anomaly detection algorithms for real-time big data:
Comparison of algorithms,” in 2017 6th Mediterranean Conference on
Embedded Computing (MECO), June 2017, pp. 1–6.

[10] A. Kumar, A. Srivastava, N. Bansal, and A. Goel, “Real time data
anomaly detection in operating engines by statistical smoothing tech-
nique,” in 2012 25th IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE), April 2012, pp. 1–5.

[11] S. Ahmad, A. Lavin, S. Purdy, and Z. Agha, “Unsupervised
real-time anomaly detection for streaming data,” Neurocomputing,

vol. 262, no. Supplement C, pp. 134 – 147, 2017, online Real-
Time Learning Strategies for Data Streams. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925231217309864

[12] N. Chen, Z. Yang, Y. Chen, and A. Polunchenko, “Online anomalous
vehicle detection at the edge using multidimensional ssa,” in 2017
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), May 2017, pp. 851–856.

[13] V. Jyothi, X. Wang, S. K. Addepalli, and R. Karri, “Brain: Behavior
based adaptive intrusion detection in networks: Using hardware per-
formance counters to detect ddos attacks,” in 2016 29th International
Conference on VLSI Design and 2016 15th International Conference on
Embedded Systems (VLSID), Jan 2016, pp. 587–588.

[14] C. Malone, M. Zahran, and R. Karri, “Are hardware performance
counters a cost effective way for integrity checking of programs,” in
Proceedings of the sixth ACM workshop on Scalable trusted computing.
ACM, 2011, pp. 71–76.

[15] Microsoft, “Get started with azure,” World Wide Web, retrieved
2017-02-15. [Online]. Available: https://azure.microsoft.com/en-gb/
get-started/

[16] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A.Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, no. 2, pp. 1 – 7, Aug 2011.
[Online]. Available: http://doi.acm.org/10.1145/2024716.2024718

[17] K. Parasyris, G. Tziantzoulis, C. D. Antonopoulos, and N. Bellas,
“Gemfi: A fault injection tool for studying the behavior of applications
on unreliable substrates,” in 2014 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, June 2014, pp. 622–
629.

[18] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “Mibench: A free, commercially representative
embedded benchmark suite,” in 2001 IEEE International Workshop,
Proceedings of the Workload Characterization, 2001. WWC-4, ser.
WWC ’01. Washington, DC, USA: IEEE Computer Society, 2001,
pp. 3–14. [Online]. Available: http://dx.doi.org/10.1109/WWC.2001.15

Proceedings of the 7th Small Systems Simulation Symposium 2018, Niš, Serbia, 12th-14th February 2018

70

